/* ]]> */
Jun 262012

Trees can grow in places that regular cropping or animal raising may not be so practical, and give an amazingly rich return.

A level 3 situation is a long-term scenario stretching beyond anything we could live through on the basis of stockpiled resources.  We’ll run out of whatever energy we have stored, we’ll run out of whatever food we have stored, and we need to become self-sustaining.

To be sure, we’ll enter a level 3 scenario with hopefully some advantages.  We’ll have a year or more of time to live on our reserves, and to transition to an ongoing sustainable lifestyle for the future.  We’ll have pre-existing shelter, and a range of both high-tech and low-tech equipment and productivity aids, and also a huge knowledge base of information to help us do the right things.

Looking into the medium future, we have some obvious needs.  The ability to maintain our shelter, and the availability of ongoing supplies of drinking water, food, and renewable energy being the biggest four challenges we’ll face.  Ongoing access to Facebook is way down on the list!

There’s a product that, in at least some parts of the US, is abundant, renewable, and very low maintenance in terms of growing and collecting it.  This is a product that should be a central part of our planning.

If the heading of this article hasn’t already given away the name of this product, allow us to now dramatically introduce to you – wood.  Timber.  Lumber.  Logs.  Call it whatever you like, but wood from trees promises to be an invaluable part of our lives in many respects.

Although we can’t eat or drink wood, it can help us with maintaining our shelter, it can help us protect our lands and our crops and livestock, and it can act as a source of both heat (ie something as simple as an open fireplace) and energy (burn wood to fire boilers that drive steam-powered electricity generators).

Think back to images of the pioneering days of the US, and the earlier history of many other countries.  What do you see, wherever you look?  Things made of wood.  Indeed, even today, if you take all the wood out of your house and your life, you’ll have lots of huge gaps.

Sure, the iron age, the steel age, and the industrial revolution are all improvements on the much more primitive wooden age, but without wood, none of the other enhancements would proceed.

We said before that we will enter a level 3 scenario with some pre-existing ‘advantages’ – we use the quotes because, really, there’s nothing good about such a scenario at all, just hopefully some elements which are less bad than they could be.

There’s another advantage that you can give yourself as well, something to keep massively in mind when choosing your retreat location.  And that is having some trees on your land.  What better way of storing energy and building materials than in the form of live, living trees; a resource that continues to grow with each passing year until needed and harvested.

Of course, property that is treed will usually be more expensive than bare land, but you should be thinking not so much in terms of the present day net value of the trees (ie what you could get by selling the wood after meeting the costs of harvesting and probably reforestation) but instead, you should be thinking about the massively increased value to you these trees would represent in a level 3 situation.

Just like a gallon of gas will soar in value ten-fold and more likely one hundred-fold in a level 2+ situation, so too will the value of trees rise.  So the more treed land you can buy with your retreat, the more investment for the future you are getting at today’s bargain basement prices.

If you can afford it, buy as much forested land as possible.  There’s no real downside to this.  Worst case scenario, you have people managing your trees for you, and you get a commercial ongoing return on the land anyway, and probably more so than if you’d left the money in the bank.  Plus – unlike keeping your money in a bank – your trees are a tangible asset and form of wealth that will survive the onset of any level 2+ situation (assuming the situation isn’t initiated by a nearby atomic blast that flattens all your trees, of course – and even if that did happen, you still have the dead trees to convert to some timber and some firewood as best you can).

If you already have a retreat that is without trees, we urge you to consider quickly starting a small tree plantation – perhaps giving yourself a several year head-start by planting saplings that have already been growing in a nursery for some years.

For commercial purposes, it can take as much as 15 – 35 years for trees to mature to the point of it making good sense to harvest them (shorter time periods if you just want to burn the wood, longer time periods if you want to use the wood for construction); so if you can start your tree plantation with saplings that are already perhaps 5 years old, that is a head start for sure.

Of course, in a survival situation, you might choose to start felling trees at the point that you have no choice and urgently need the wood, even if only to use them as firewood rather than as building materials.

Here’s a very quick primer on some relevant issues to do with trees.

How Much Wood Is In Your Trees

If you are looking at some land that already has trees on it, you’ll of course want to know how much wood they comprise.

This is a difficult thing to accurately establish.  Clearly, it is impractical to have someone measuring each tree – not just its height, but its varying diameter and cross-section all the way up, plus adding in the mass in branches, too.

Instead, there are a number of standard industry accepted ‘rules of thumb’ for using some easily determined parameters such as the tree’s circumference or diameter at a particular height above the ground (usually 4.5 ft) and its total height, and then assessing the probable amount of mass in the tree.

These different rules of thumb can sometimes give very different answers.  Some of the better known are the International ¼ inch, Doyle, and Scribner rules.

Wood is also measured in different ways.  If you just want to burn it, perhaps the most relevant measurement is by weight.  If you are hoping to sell it for construction, then it is often measured in board feet – a board foot is one cubic foot of timber, usually thought of as a piece of wood one foot by one foot, and one inch thick.

You’ll also see wood measured by the cord (particularly firewood).  A cord of wood is a neatly tightly stacked pile of wood totaling 128 cu ft (typically in a form such as 4′ x 4′ x 8′).  At least in theory, solid wood takes up about 80% – 85% of the volume of corded wood.

A cord of red oak has the heating equivalent of about 108 gallons of fuel oil.

Choosing the Trees to Grow

You have a number of factors to consider in choosing the type of trees you’ll want to grow.  All other things being equal, a tree that is predisposed to grow more quickly is preferable to one that is a slower growing tree.

But there’s more to your decision than simply the theoretical rate of growth (ie accumulation of mass).

One important issue is the ability of the tree to withstand the climate in your area, and also the presence of any bugs or other bio-hazards that will reduce the viability of your tree plantings.  Water availability, aspect (ie if the land faces to the north or south), wind and of course soil quality and structure are all important issues.

Then there is the issue of what purpose you wish to use the wood for.  If you are growing wood to be used for construction purposes, you generally want to have a type of tree that grows long straight trunks.  Sometimes you might want a hard wood – these typically are much slower growing trees.  Some trees have wood that is more resilient to various types of decay once harvested and in use for construction materials or whatever than other types (for example cedar is more long-lasting outdoors than pine).  But if you’re growing wood purely to burn, these matters become less important.

There is also the matter of tree density.  If you can have more trees closer together, you’ll obviously get a better return in terms of amount of wood per acre of land.

This diversity of ‘best’ tree choice is shown, for example, with the range of species cultivated by Weyerhauser.  In the western US, they primarily grow Douglas Fir and Cedar (122 million cu m as of 31 Dec, 2011), followed by 23 million cu m of Whitewood and 9 million cu m of other types of tree).  But in the south they grow primarily Southern Yellow Pine (105 million cu m) and hardwood (30 million cu m).  In Brazil and Uruguay, they have large holdings of Eucalyptus trees.

How to Choose Trees

Your choice depends on your environment and also on the purpose for which you want to use the trees.  Energy source and construction materials will be your prime choices, whereas at present, trees for burning are very much a secondary use, and another primary use that will be less relevant to you is as a source of raw pulp for paper and cardboard products.

We suggest you consult with local agricultural and horticultural specialists to see what types of trees would be best suited for your retreat area and follow their advice.

How Long Until You Can Harvest Trees

This is one of those ‘how high is up’ type questions, because obviously even after one year you have a bit of growth, and after 100 years you may still be getting some growth.

The optimum time to harvest recognizes that it takes a certain time until the trees are big enough to have sufficient commercial value to be felled and hauled away and then the land cleared and prepared for regrowth.  When trees are young, they are too small to be useful as construction timber, and so they only have low value for firewood.  As they get into their mid 20 years and above, they start to get commercially significant amounts of useful wood that can be used for construction purposes.

It is also necessary to cut down some trees on a regular basis, whether you need to or not, so as to ‘thin’ out the trees, leaving the remaining ones with sufficient space for their leaf and root systems.  You get more overall growth if you thin the trees as needed – and also get a trickle of wood out of your forest each year prior to the major harvest.

Generally, managed pine tree plantations are harvested after something like perhaps 25 – 40 years (in the south).  Over a 35 year period, it is reasonable to expect anywhere from 67 tons to 151 tons of wood harvested (in the course of thinning operations and final harvesting) per acre, based on a planting rate of 700 trees/acre to start with.

In such a model, there will be very little yield until thinning operations commence in about the 15th year.  This article provides helpful information.

It is also possible to delay/defer the time of main tree harvesting.  Clearly you wouldn’t want to have a forest that gives you a supply of timber once every 35 years, and almost nothing in-between times.

To get a new forest development started, you can start felling some areas a bit earlier than optimum, and other areas a bit later than optimum, so as to spread the main harvest time over a decade.  Then if you repeat this for successive generations, in time you’ll end up with steady logging operations each year.

Hardwood trees can take twice as long to reach a harvesting point (ie 60 – 80 years or more).  This makes them impractical for most of our purposes.

A Couple of Lists of Trees Sorted by Growing Speed

The rate at which trees grow depends on many things.  Climate and soil are two very important variables; unfortunately, once we’ve chosen a retreat location, we no longer have much additional input on the climate issue, and soil type and chemistry may or may not be something that it is easy/practical for us to adjust substantially.

However we obviously can make the best choice possible when it comes to choosing tree type, and trying to match the best tree type to the local prevailing situations.

This webpage lists various types of trees that were grown at the Morton Arboretum near Chicago.  They started off as 10 ft tall saplings, and then after ten years, were categorized as fast growing (trees now 25′ tall or taller – ie, they had grown an extra 15 ft), moderate (18 – 25 ft) or slow (less than 18 ft).

We can’t make too many specific statements from this one set of results, but clearly, even if all other things aren’t completely equal, an American Elm is more likely to grow faster than a Yellowwood.

Here’s the list


  • American Elm (Ulmus americana)
  • Silver Maple (Acer saccharinum)S
  • Sycamore (Platanus occidentalis)


  • Green Ash (Fraxinus pennsylvanica)
  • Kentucky Coffeetree (Gymnocladus dioica)
  • Thornless Honeylocust (Gleditsia triacanthos var. inermis)
  • Linden (Tilia platyphyllos, T. cordata, T. xeuchlora ‘Redmond’, and T. tomentosa)
  • English Oak (Quercus robur)
  • Pin Oak (Quercus palustris)
  • Sawtooth Oak (Quercus acutissima)
  • Shingle Oak (Quercus imbricaria)
  • Red Maple (Acer rubrum)
  • Sugar Maple (Acer saccharum)
  • Tuliptree (Liriodendron tulipifera)


  • European Ash (Fraxinus excelsior)
  • Ohio Buckeye (Aesculus glabra)
  • Ginkgo (Ginkgo biloba)
  • Common Hackberry (Celtis occidentalis)
  • European Hornbeam (Carpinus betulus)
  • Ironwood (Ostrya virginiana)
  • Norway Maple (Acer platanoides)
  • Sweetgum (Liquidambar styraciflua)
  • Yellowwood (Cladrastis kentukea)

Here’s another list of trees graded as fastest, faster, and fast growing, taken from this page.


  • Hybrid Poplar (Populus hybrid)
  • Weeping Willow (Salix niobe/babylonica)
  • Silver Maple (Acer saccharinum)


  • Hardy Pecan (Carya Illinoinensis)
  • Ash (Fraxinus spp.) including Green Ash, Cimmaron Ash, White Ash and Autumn Purple Ash
  • Tulip Poplar (Liriodendron tulipifera)
  • Colorado Blue Spruce (Picea pungens glauca)
  • Douglas Fir (Pseudotsuga menziesii syn. P. taxifola, P. douglasii)
  • Canadian Hemlock (Tsuga canadensis)
  • Dawn Redwood (Metsequoia glyptostroboides)


  • Scotch or Scots Pine (Pinus sylvestris)
  • Black Walnut (Juglans Nigra)


If your retreat is located in a part of the country that is amendable to forestry, you would be very well advised to allocate some of its land to tree growing.  Better still is to buy a retreat property that already has existing stands of trees on it, so you don’t need to work through the lengthy lead times to the point where you can start harvesting the trees in appreciable quantities.

The amount of yield you get from trees varies enormously, but a reasonable range is from 67 – 151 tons per acre per year (when averaged out over a 35 year cycle, and with trees initially planted at a density of 700 trees/acre).

This translates to, extremely approximately, somewhere between the heating energy equivalent of 4,500 – 10,000 gallons of heating oil per acre of forest per year.  Or to somewhere between 40 MWhr and 100 MWhr of electricity.

To put that in daily terms which might be more meaningful, we’re talking 12 – 27 gallons of heating oil equivalent a day, or about 100 kWhr – 250 kWhr of electricity.

Clearly, even a small stand of only several acres of trees, if optimally planted and managed, can be sufficient to give you true energy independence, as well as material for the construction of everything from furniture to houses, barns and wagons, and also a possibly valuable trading good when buying/selling things with other people.


David Spero[suffusion-the-author display='description']

Leave a Reply

/* ]]> */